泛太科技楊恒博士:揚(yáng)帆出海正當(dāng)時(shí)
2025年5月下旬無(wú)錫泛太科技有限公司董事長(zhǎng)、新加坡南洋理工大學(xué)校友、香港科技大學(xué)校友、西北工業(yè)大學(xué)無(wú)錫校友會(huì)副會(huì)長(zhǎng)楊恒博士應(yīng)約訪問了泰國(guó)曼谷、新加坡等地。在曼谷期間,楊博士和泰國(guó)AI高教、職業(yè)教育合作方進(jìn)行了深入探討,并介紹了泛太出海 AI教育從實(shí)驗(yàn)室、師資培養(yǎng)和校企合作Total Solution,獲得合作方好評(píng)。
圖 1 楊恒博士在美國(guó)硅谷參加國(guó)際會(huì)議
5月20日傍晚6點(diǎn),楊恒博士與新加坡共和理工學(xué)院的姜力軍教授、國(guó)立大學(xué)吳達(dá)軍博士、華科大倉(cāng)儲(chǔ)總裁陶明及西北工業(yè)大學(xué)新加坡校友會(huì)王永杰、強(qiáng)大勇、徐磊、陳國(guó)超、李寧和吳小偉等一批教授專家在武吉士的麥當(dāng)勞會(huì)晤。
圖2 在新加坡武吉士麥當(dāng)勞會(huì)晤
楊恒博士作為“海外科技領(lǐng)軍人才”和一批志同道合合作伙伴回國(guó)創(chuàng)辦了無(wú)錫泛太科技有限公司。公司成立于2009年,坐落于中國(guó)物聯(lián)網(wǎng)之都無(wú)錫新區(qū),擁有一批留英、留美歸國(guó)博士團(tuán)隊(duì)。泛太科技擁有包括發(fā)明專利、實(shí)用新穎專利以及計(jì)算機(jī)軟件著作權(quán)在內(nèi)的中國(guó)完全自主知識(shí)產(chǎn)權(quán)百余項(xiàng)。近年來(lái)與國(guó)內(nèi)500余所院校合作共建了多門類的實(shí)驗(yàn)/實(shí)訓(xùn)室、實(shí)驗(yàn)/實(shí)訓(xùn)中心以及實(shí)踐/實(shí)訓(xùn)基地,合作院校類別涵蓋本科、高職、中職、技工技師以及普教學(xué)校,教培產(chǎn)品與服務(wù)受眾已超過50萬(wàn)人。公司和清華大學(xué)共同獲科技創(chuàng)新一等獎(jiǎng),也成功進(jìn)入華為等一批上市公司頭部企業(yè)供應(yīng)商體系。
近年來(lái),全球AI賽道逐漸呈現(xiàn)中美爭(zhēng)霸格局,中國(guó)AI、工業(yè)互聯(lián)網(wǎng)、無(wú)人駕駛智能座艙、無(wú)人工廠、智慧高鐵及智慧礦山等前沿技術(shù)不斷獲得海外關(guān)注。中國(guó)科技產(chǎn)業(yè)及教育產(chǎn)品具有物美價(jià)廉優(yōu)勢(shì)深受海外客戶歡迎,楊恒博士此次東南亞行的一個(gè)主要目的就是與當(dāng)?shù)亟?jīng)銷商探討與各海外大專院校合作開辦AI專業(yè)課程設(shè)置。
無(wú)錫泛太科技在AI方面產(chǎn)品、教育與產(chǎn)業(yè)應(yīng)用,立即引起了在場(chǎng)教授專家們的濃厚興趣和熱烈討論。為使方便交流,大家移步到附近的湘聚餐館,一邊聚餐,一邊進(jìn)一步交流。
第二天早上,楊恒還就相關(guān)話題與其他朋友繼續(xù)探討,詳細(xì)闡述泛太主打產(chǎn)品、企業(yè)運(yùn)行模式和出海目標(biāo)及愿景。
在新的一波AI教育浪潮下,南洋理工大學(xué)和新加坡國(guó)立大學(xué)一批博士專家支撐下,新加坡合作方和泛太科技正在推出新加坡兒童AI學(xué)習(xí)品牌。歡迎國(guó)內(nèi)外感興趣朋友加盟合作。
圖3 新加坡湘聚餐廳大家共同祝賀“泛太科技 乘風(fēng)破浪 出海成功”
此次出訪是一次有關(guān)AI交流、學(xué)習(xí)和具體應(yīng)用的有意義碰撞。最后,預(yù)祝無(wú)錫泛太科技出海乘風(fēng)破浪!直掛云帆濟(jì)滄海?。ㄈ耐辏?br />
(感謝西北工業(yè)大學(xué) 新加坡校友會(huì)提供部分內(nèi)容和圖片)
附件 1. 泛太科技針對(duì)海外市場(chǎng)主打產(chǎn)品
產(chǎn)品1 第二代鴻蒙智能座艙實(shí)訓(xùn)車
第二代鴻蒙智能座艙實(shí)訓(xùn)車(SeaIOT-CAR-05)是一款基于鴻蒙操作系統(tǒng)定制開發(fā)的智能座艙實(shí)驗(yàn)實(shí)訓(xùn)系統(tǒng),該系統(tǒng)模擬智能網(wǎng)聯(lián)汽車大腦,是云計(jì)算、大數(shù)據(jù)、人工智能、智聯(lián)網(wǎng)、自動(dòng)駕駛、國(guó)產(chǎn)鴻蒙系統(tǒng)等新一代信息技術(shù)在智能網(wǎng)聯(lián)汽車教育領(lǐng)域的創(chuàng)新應(yīng)用成果,整個(gè)智能座艙由一部純電動(dòng)汽車改裝而成。包括智能駕駛實(shí)訓(xùn)系統(tǒng)、鴻蒙智能座艙實(shí)訓(xùn)系統(tǒng)、路況模擬虛擬仿真系統(tǒng)和線控底盤數(shù)據(jù)采集系統(tǒng)4大部分組成。第二代鴻蒙智能座艙實(shí)訓(xùn)車既可進(jìn)行實(shí)驗(yàn)實(shí)訓(xùn),也支持開展二次開發(fā),更可完成無(wú)人駕駛,是本科人工智能、電子信息工程、車輛工程、自動(dòng)化以及計(jì)算機(jī)科學(xué)與技術(shù)專業(yè),高職高專智能網(wǎng)聯(lián)汽車技術(shù)、汽車電子技術(shù)、汽車檢測(cè)與維修技術(shù)、新能源汽車技術(shù)、智能交通技術(shù)運(yùn)用、汽車運(yùn)用與維修技術(shù)等專業(yè)。
http://www.tools.k1lr.cn/products/podetail/492.html
產(chǎn)品2 C2M2B黑燈工廠智能生產(chǎn)線
C2M2B黑燈工廠智能生產(chǎn)線(SeaIOT-EA-DF04-01),是一款以AI、工業(yè)互聯(lián)網(wǎng)和電氣自動(dòng)化為核心技術(shù)的全流程無(wú)人值守、甚至無(wú)需照明的訂單式名片夾裝配產(chǎn)線。將工廠產(chǎn)線簡(jiǎn)化搬進(jìn)課堂,讓學(xué)生在課堂上就能學(xué)習(xí)智能產(chǎn)線的各項(xiàng)技術(shù),與工廠無(wú)縫銜接,縮短學(xué)生與行業(yè)的距離。
產(chǎn)線由原料碼垛、移載輸送、機(jī)器人裝配、雕刻檢測(cè)共4個(gè)工位、以及安全操作罩殼拼裝組合形成,結(jié)合邊緣服務(wù)器、工業(yè)互聯(lián)網(wǎng)融合平臺(tái),通過工業(yè)網(wǎng)絡(luò)通信技術(shù),用戶直接使用微信小程序或移動(dòng)端APP下單觸發(fā)生產(chǎn),實(shí)現(xiàn)名片夾上下蓋的自動(dòng)取料、移載輸送、機(jī)器人自動(dòng)取針、裝針、頂針、合蓋、壓緊、中英文字符激光雕刻、名片夾表面劃痕瑕疵檢測(cè)、合格品及殘次品自動(dòng)分揀等功能,平臺(tái)能夠?qū)崟r(shí)展示原材料庫(kù)存狀態(tài)、設(shè)備運(yùn)行狀態(tài)、當(dāng)前及歷史工單情況、視覺采集圖片與檢測(cè)結(jié)果、產(chǎn)線能量消耗等信息。
課程方面,提供了豐富的實(shí)驗(yàn)資源和應(yīng)用開發(fā)案例,支持職業(yè)技能大賽,具有協(xié)同分組實(shí)驗(yàn)實(shí)訓(xùn)、科研開發(fā)及應(yīng)用創(chuàng)新的能力。
http://www.tools.k1lr.cn/products/podetail/488.html
產(chǎn)品3 鴻蒙軌道交通應(yīng)用場(chǎng)景模型設(shè)備
鴻蒙軌道交通應(yīng)用場(chǎng)景模型設(shè)備(型號(hào):SeaIOT-PMST-02),包括軌道交通智能沙盤實(shí)訓(xùn)系統(tǒng)、機(jī)車控制系統(tǒng)、微機(jī)聯(lián)鎖系統(tǒng)、CTC車站系統(tǒng)、CTC調(diào)度室系統(tǒng)、智慧軌道軟件模塊以及配套的課程資源。整套設(shè)備模擬真實(shí)軌道交通運(yùn)營(yíng)環(huán)境,實(shí)現(xiàn)列車自動(dòng)控制、列車調(diào)度、乘客信息以及智能監(jiān)控與預(yù)警管理等,以及再現(xiàn)智慧軌道交通中的交通流量管理、路徑優(yōu)化、自動(dòng)駕駛車輛調(diào)度等應(yīng)用場(chǎng)景模擬,搭建軌道交通控制和調(diào)度的仿真教學(xué)科研平臺(tái)。
http://www.tools.k1lr.cn/products/podetail/490.html
產(chǎn)品4 物聯(lián)網(wǎng)技術(shù)開發(fā)平臺(tái)
物聯(lián)網(wǎng)技術(shù)開發(fā)平臺(tái)(型號(hào):SeaIOT-FTable-02)是一款基礎(chǔ)教學(xué)實(shí)驗(yàn)開發(fā)平臺(tái),由1個(gè)通用平臺(tái),多個(gè)系列硬件模塊,上位機(jī)軟件及教學(xué)資源三部分組成,主要針對(duì)物聯(lián)網(wǎng)、電子信息、計(jì)算機(jī)等專業(yè)的單片機(jī)與傳感器、嵌入式接口技術(shù)、識(shí)別技術(shù)、無(wú)線通信技術(shù)、智能產(chǎn)品、人工智能等課程的教學(xué)實(shí)驗(yàn)。
SeaIOT-FTable-1A型增加了鴻蒙開發(fā)模塊。
平臺(tái)結(jié)構(gòu)符合人體工學(xué)設(shè)計(jì),由分離式基座和網(wǎng)板組成。硬件模塊采用磁吸方式與基座連接固定,接觸式探針進(jìn)行供電和信號(hào)傳輸,使用方便,不易損壞管腳,易于拓展。場(chǎng)景引入式教學(xué)模式和豐富的教學(xué)資源,既可以支撐單個(gè)模塊單一知識(shí)點(diǎn)的學(xué)習(xí),也支持多個(gè)模塊自由組合進(jìn)行多個(gè)知識(shí)點(diǎn)的綜合應(yīng)用。
http://www.tools.k1lr.cn/products/podetail/317.html
產(chǎn)品5 無(wú)線傳感網(wǎng)全功能實(shí)驗(yàn)箱
SeaIOT-B-WSN-2A型無(wú)線傳感網(wǎng)全功能實(shí)驗(yàn)箱是SeaIOT-B-WSN-02型的升級(jí)版,集成Bluetooth、WiFi、IEEE802.15.4、ZigBee等短距離無(wú)線通信技術(shù),將6LowPAN(IPv6)互聯(lián)網(wǎng)協(xié)議應(yīng)用到短距離無(wú)線通信網(wǎng)絡(luò)中,與ZigBee使用的ZStack協(xié)議棧并存,支持雙協(xié)議棧;集成LoRa、NB-IoT等長(zhǎng)距離無(wú)線通信技術(shù),自定義傳感網(wǎng)協(xié)議,CoAP應(yīng)用協(xié)議,實(shí)現(xiàn)主從機(jī)組網(wǎng)應(yīng)用,平臺(tái)接入應(yīng)用。采用三星Cortex-A9 S5P4418四核處理器作為智能網(wǎng)關(guān),支持6LowPAN、Z-Stack、自定義傳感網(wǎng)協(xié)議等多協(xié)議解析,具有1GB內(nèi)存、8GB大容量存儲(chǔ)空間、7寸電容觸摸顯示屏、豐富的外圍接口,可板載GPS定位、WIFI/BT二合一通訊、4G移動(dòng)通訊等多種模塊,內(nèi)嵌Android、Linux雙系統(tǒng),可一鍵切換。
系統(tǒng)提供豐富的實(shí)驗(yàn)例程、實(shí)驗(yàn)手冊(cè)、教學(xué)視頻等課程資源,能夠滿足嵌入式接口技術(shù)、無(wú)線通信技術(shù)、無(wú)線傳感器網(wǎng)絡(luò)、嵌入式系統(tǒng)應(yīng)用開發(fā)、Android移動(dòng)互聯(lián)網(wǎng)應(yīng)用開發(fā)等課程的教學(xué)與實(shí)踐。
http://www.tools.k1lr.cn/products/podetail/318.html
產(chǎn)品6 5G人工智能實(shí)驗(yàn)箱
5G人工智能實(shí)驗(yàn)箱(型號(hào):SeaIOT-B-5GEDK-01),是一款綜合5G通信、邊緣計(jì)算、視覺識(shí)別、語(yǔ)音識(shí)別、物聯(lián)網(wǎng)技術(shù)、Python應(yīng)用開發(fā)的實(shí)驗(yàn)教學(xué)產(chǎn)品。
產(chǎn)品采用高性能AI處理器,內(nèi)嵌機(jī)器視覺庫(kù)和深度學(xué)習(xí)框架,外圍連接攝像頭、麥克風(fēng)陣列進(jìn)行圖像、語(yǔ)音信號(hào)的采集、分析、識(shí)別、決策;引出處理器外設(shè)接口用于應(yīng)用擴(kuò)展;板載物聯(lián)網(wǎng)傳感器和傳感網(wǎng)模塊,支持通過有線、或無(wú)線方式與AI系統(tǒng)進(jìn)行通信;融合5G移動(dòng)通信,可將數(shù)據(jù)、圖像、視頻等多媒體數(shù)據(jù)及結(jié)構(gòu)化數(shù)據(jù)推送到云服務(wù)平臺(tái);提供5G云端接入、視頻流實(shí)時(shí)推送、圖像處理基礎(chǔ)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、語(yǔ)音識(shí)別、數(shù)據(jù)預(yù)測(cè)、以及與物聯(lián)網(wǎng)模塊結(jié)合開展綜合應(yīng)用的案例。
http://www.tools.k1lr.cn/products/podetail/305.html
產(chǎn)品7 人工智能物聯(lián)網(wǎng)實(shí)驗(yàn)箱
人工智能物聯(lián)網(wǎng)實(shí)驗(yàn)箱(型號(hào):SeaIOT-B-AIOT-01),是一款綜合人工智能物聯(lián)網(wǎng)技術(shù)綜合應(yīng)用、5G通信、邊緣計(jì)算、視覺識(shí)別、語(yǔ)音識(shí)別、Python應(yīng)用開發(fā)的實(shí)驗(yàn)教學(xué)產(chǎn)品。
產(chǎn)品采用高性能AI處理器,內(nèi)嵌機(jī)器視覺庫(kù)和深度學(xué)習(xí)框架,板載攝像頭、麥克風(fēng)陣列進(jìn)行圖像、語(yǔ)音信號(hào)的采集、分析、識(shí)別、決策;引出處理器外設(shè)接口用于應(yīng)用擴(kuò)展;板載物聯(lián)網(wǎng)傳感器和傳感網(wǎng)模塊,支持通過有線、或無(wú)線方式與AI系統(tǒng)進(jìn)行通信;融合5G移動(dòng)通信,可將數(shù)據(jù)、圖像、視頻等多媒體數(shù)據(jù)及結(jié)構(gòu)化數(shù)據(jù)推送到云服務(wù)平臺(tái);提供5G云端接入、視頻流 實(shí)時(shí)推送、圖像處理基礎(chǔ)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、語(yǔ)音識(shí)別、數(shù)據(jù)預(yù)測(cè)、以及與物聯(lián)網(wǎng)模塊結(jié)合開展綜合應(yīng)用的案例。
http://www.tools.k1lr.cn/products/podetail/473.html
附件 2. 泛太科技針對(duì)海外市場(chǎng)的AI 應(yīng)用型本科教育解決方案
Teaching, Experiment and Graduation Project Plan for the Four-year Undergraduate Program in Artificial Intelligence and Information Technology International(Based on total solution of Fantai. Tech.)
1.1 Freshman Year Courses and Practice Plan
1.1.1 First Semester
·
Course Offerings: "Advanced Mathematics", "University Physics", "Introduction to Computer Basics and Programming". "Advanced Mathematics" and "University Physics" provide the mathematical and physical foundation for subsequent professional courses. "Introduction to Computer Basics and Programming" teaches basic computer principles, basic Python programming syntax, data types, control structures, etc., enabling students to get an initial exposure to programming and laying the foundation for in - depth learning of programming languages and development technologies.
·
Experiment Arrangements: Relying on the 5G artificial intelligence experiment box, conduct Python basic programming experiments, such as simple numerical calculations, string processing, conditional judgment, and loop structure applications. With the help of the basic development platform for electronics and computer - related majors, carry out basic circuit cognition experiments to familiarize students with the basic structure of the experiment box, circuit connection methods, and the use of common instruments and meters.
·
Teaching Objectives: Enable students to understand the importance of basic subject knowledge in the major, master basic Python programming skills and basic circuit experiment operations, cultivate students' logical thinking and hands - on practical ability, and stimulate students' interest in learning professional courses.
1.1.2 Second Semester
·
Course Offerings: "Discrete Mathematics", "Digital Electronic Technology", "Advanced Python Programming". "Discrete Mathematics" teaches knowledge such as set theory, mathematical logic, and graph theory, providing theoretical support for artificial intelligence algorithm design. "Digital Electronic Technology" explains digital logic basics, combinational logic circuits, and sequential logic circuits, enabling students to understand the basic principles and design methods of digital circuits. "Advanced Python Programming" delves into Python functions, modules, file operations, object - oriented programming, etc., to improve students' programming ability.
·
Experiment Arrangements: Conduct digital circuit experiments on the basic development platform for electronics and computer - related majors, such as function testing and circuit design of digital chips like counters and decoders. Use the 5G artificial intelligence experiment box to carry out advanced Python programming experiments, such as developing simple command - line tools and file management programs.
·
Teaching Objectives: Enable students to master the basic concepts and principles of discrete mathematics and digital electronic technology, proficiently use Python for more complex program development, improve students' logical thinking and circuit design capabilities, and cultivate students' programming thinking for solving practical problems.
1.2 Sophomore Year Courses and Practice Plan
1.2.1 First Semester
·
Course Offerings: "Data Structure", "Algorithm Analysis and Design", "Introduction to Artificial Intelligence". "Data Structure" teaches data structures such as linear lists, stacks, queues, trees, and graphs, as well as their storage and operation methods, providing a data organization basis for algorithm implementation. "Algorithm Analysis and Design" explains common algorithm design strategies and algorithm complexity analysis methods, cultivating students' ability to design efficient algorithms. "Introduction to Artificial Intelligence" introduces the development history, basic concepts, main research fields, and application scenarios of artificial intelligence, giving students a comprehensive understanding of artificial intelligence.
·
Experiment Arrangements: Based on the basic development platform for electronics and computer - related majors and the 5G artificial intelligence experiment box, conduct data structure and algorithm verification experiments, such as implementing the basic operations of linked lists and binary trees, and performance testing of sorting and searching algorithms. Carry out simple artificial intelligence algorithm experiments, such as building rule - based expert systems.
·
Teaching Objectives: Enable students to master the core knowledge of data structures and algorithms, understand the basic principles and applications of artificial intelligence, be able to use the learned knowledge for simple algorithm implementation and artificial intelligence system construction, and improve students' algorithm design and practical ability.
1.2.2 Second Semester
·
Course Offerings: "Machine Learning", "Computer Networks", "Database Principles and Applications". "Machine Learning" deeply explains machine learning algorithms such as supervised learning, unsupervised learning, and semi - supervised learning, including the principles and applications of models such as linear regression, decision trees, and neural networks. "Computer Networks" introduces the computer network architecture, protocols, and network communication principles, enabling students to understand the network data transmission and communication mechanisms. "Database Principles and Applications" teaches the basic concepts of database systems, relational database design, and SQL language, cultivating students' database design and operation capabilities.
·
Experiment Arrangements: Use the 5G artificial intelligence experiment box to carry out machine learning algorithm experiments, such as using the iris dataset for classification algorithm experiments and building a simple neural network using the TensorFlow framework for handwritten digit recognition. Conduct computer network experiments on the basic development platform for electronics and computer - related majors, such as network topology construction, IP address configuration, and network communication testing. Conduct database experiments, such as designing and implementing a small - scale database management system.
·
Teaching Objectives: Enable students to proficiently master machine learning algorithms and applications, understand the principles of computer networks and databases, have the ability to use machine learning algorithms to solve practical problems, design and manage databases, and improve students' practical skills in the cross - field of artificial intelligence and information technology.
1.3 Junior Year Courses and Practice Plan
1.3.1 First Semester
·
Course Offerings: "Deep Learning", "Machine Vision", "Natural Language Processing". "Deep Learning" deeply studies the structure, training methods, and optimization strategies of deep neural networks, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and their variants. "Machine Vision" introduces the composition of machine vision systems, image processing algorithms, object detection and recognition technologies, cultivating students' ability to use machine vision technology to solve practical problems. "Natural Language Processing" explains the basic tasks, models, and algorithms of natural language processing, such as text classification, sentiment analysis, and machine translation, enabling students to understand how to make computers understand and process human language.
·
Experiment Arrangements: Based on the 5G artificial intelligence experiment box, carry out deep learning experiments, such as using CNNs for image classification and object detection, and using RNNs for text generation. Conduct machine vision experiments, such as industrial product appearance defect detection and face recognition access control system design. Carry out natural language processing experiments, such as news text classification and simple question - answering system development.
·
Teaching Objectives: Enable students to master the core technologies of deep learning, machine vision, and natural language processing, be able to use relevant technologies to develop intelligent application systems, and improve students' practical and innovative abilities in the cutting - edge fields of artificial intelligence.
1.3.2 Second Semester
·
Course Offerings: "Internet of Things Technology and Applications", "Intelligent Computing Technology", "Principles of Big Data Technology". "Internet of Things Technology and Applications" introduces the architecture, key technologies, and application scenarios of the Internet of Things, including sensor technology, wireless communication technology, Internet of Things platforms, etc., cultivating students' ability to design and develop Internet of Things systems. "Intelligent Computing Technology" explains intelligent computing methods such as genetic algorithms and particle swarm optimization algorithms and their applications in optimization problems, expanding students' thinking for solving complex problems. "Principles of Big Data Technology" teaches the basic technologies of big data collection, storage, processing, and analysis, such as the Hadoop and Spark frameworks, enabling students to understand the big data processing process and technical architecture.
·
Experiment Arrangements: Combine the basic development platform for electronics and computer - related majors and the 5G artificial intelligence experiment box to conduct Internet of Things comprehensive experiments, such as smart home system construction and smart agricultural environment monitoring system development. Carry out intelligent computing algorithm experiments, such as using genetic algorithms to solve function optimization problems. Conduct big data technology experiments, such as using Hadoop for large - scale data storage and processing and using Spark for data analysis and mining.
·
Teaching Objectives: Enable students to master the basic principles and applications of the Internet of Things, intelligent computing, and big data technologies, be able to comprehensively use multiple technologies to solve practical problems, and improve students' cross - field technology application and system development capabilities.
1.4 Senior Year Courses and Practice Plan
1.4.1 First Semester
·
Course Offerings: "Professional Comprehensive Course Design". Oriented by project practice, comprehensively apply the previously learned professional knowledge. Students work in groups to choose comprehensive projects, such as the development of intelligent security monitoring systems and the design of intelligent logistics management systems, covering artificial intelligence algorithms, information technology applications, system integration, and other aspects.
·
Experiment Arrangements: Under the guidance of teachers, students use two experimental platforms to complete project requirements analysis, system design, code writing, system testing, and optimization. During the project implementation process, cultivate students' teamwork, project management, and comprehensive technology application capabilities.
·
Teaching Objectives: Through the professional comprehensive course design, improve students' ability to comprehensively use professional knowledge to solve practical problems, cultivate students' teamwork spirit and project management capabilities, and lay a foundation for graduation projects and future career development.
1.4.2 Second Semester
·
Course Offerings: "Graduation Project". Students determine their graduation project topics according to their interests and professional directions and conduct in - depth research and development. The topics can be sourced from teachers' scientific research projects, actual enterprise needs, or students' independent innovative ideas, such as artificial - intelligence - based medical image diagnosis assistance systems and big - data - based personalized recommendation systems.
·
Experiment Arrangements: Students independently complete the graduation project, including project research, scheme design, technology selection, system development, experimental verification, and thesis writing. Teachers provide regular guidance, check the progress and quality of students' graduation projects, and help students solve problems encountered.
·
Teaching Objectives: Through the graduation project, cultivate students' independent thinking, innovative practice, and scientific research abilities, enable students to have the ability to comprehensively use the learned knowledge to solve complex engineering problems, and meet the professional level and comprehensive quality requirements of undergraduate graduates.
1.5 Graduation Project Topic Directions
1. Deep - Learning - Based Intelligent Medical Image Diagnosis System: Use deep learning algorithms to analyze medical images (such as X - rays, CTs, MRIs, etc.) to achieve automatic disease disease diagnosis and auxiliary decision - making, improving the accuracy and efficiency of medical diagnosis.
2. Intelligent Environmental Monitoring System Based on the Internet of Things and Artificial Intelligence: Combine Internet of Things sensor technology to collect environmental data (such as air quality, water quality, noise, etc.), and use artificial intelligence algorithms for data analysis and prediction to achieve real - time environmental monitoring and intelligent management, providing support for environmental protection decision - making.
3. Natural - Language - Processing - Based Intelligent Customer Service System: Adopt natural language processing technology to implement an intelligent customer service system that can automatically understand user questions and provide accurate answers, improving customer service efficiency and quality. It can be applied in many fields such as e - commerce and finance.
4. Big - Data - and Machine - Learning - Based Personalized Education Recommendation Platform: Collect and analyze students' learning data, use machine learning algorithms to build personalized learning models, provide students with customized learning resources and learning path recommendations, achieve personalized education, and improve learning effects.